Name _______________________

Lesson 3

Factor Trees

Essential Question: How can you factor numbers using a factor tree?

Mr. Shu gives this puzzle to his math students.

“Write 24 as a product of factors that are prime. Remember that a prime number must be greater than 1 and can have only 1 and itself as factors.”

You can use a diagram called a factor tree to find the factors of a number.

Use a factor tree to find the prime number factors that have a product of 24.

STEP 1
Write the number to be factored at the top of the factor tree.

- 24

STEP 2
Write it as a product of any two factors.

Think: $4 \times 6 = 24$

- 24
 - 4
 - 6

STEP 3
Write each factor as the product of two factors.

Think: $2 \times 2 = 4$
Think: $2 \times 3 = 6$

- 24
 - 4
 - 2
 - 2
 - 6
 - 2
 - 3

So, $24 = 2 \times 2 \times 2 \times 3$.

STEP 4
Continue until each factor is a prime number.

Think: $2 \times 1 = 2$ and $3 \times 1 = 3$

Write the factors that are prime numbers from least to greatest.

- 2
- 2
- 2
- 3

Possible answers: 2, 3, 5

Check students’ factor trees. Possible answer is given.

Try This! Make a different factor tree for 24.

- Is the product of factors the same as in the Example? Explain.

See Planning Guide, pg. 81.

Math Talk
Explain how you can use factored numbers to find common factors.

Possible explanation: You can see what factors are the same for the two numbers; these would be common factors.
Share and Show ▶ MATH BOARD ◀

1. Use a factor tree to find the prime number factors that have a product of 210.
 - Write 210 as a product of any two factors.
 \[210 = 10 \times 21 \]
 - Write each factor as the product of factors.
 \[10 = 2 \times 5 \quad 21 = 3 \times 7 \]

 Now each factor has only 1 and itself as factors.

 So, \[210 = 2 \times 3 \times 5 \times 7 \]

Use a factor tree to find the prime number factors.

Check students’ factor trees.

2. \[\begin{array}{c}
\times \\
\times
\end{array} \]
 \[2 \times 2 \times 2 \]

3. \[\begin{array}{c}
\times \\
\times
\end{array} \]
 \[3 \times 3 \times 5 \]

4. \[\begin{array}{c}
\times \\
\times
\end{array} \]
 \[2 \times 5 \times 5 \times 7 \]

On Your Own

Use a factor tree to find the prime number factors.

Check students’ factor trees.

5. \[\begin{array}{c}
\times \\
\times
\end{array} \]
 \[2 \times 2 \times 3 \times 3 \]

6. \[\begin{array}{c}
\times \\
\times
\end{array} \]
 \[2 \times 2 \times 2 \times 3 \times 3 \]

7. \[\begin{array}{c}
\times \\
\times
\end{array} \]
 \[2 \times 2 \times 3 \times 3 \times 5 \]

Problem Solving ▶ REAL WORLD ◀

Mr. Shu gave these problems to his math students. Solve.

8. Write 500 as a product of prime number factors. Each factor must be greater than 1 and can have only 1 and itself as factors.
 \[2 \times 2 \times 5 \times 5 \times 5 \]

9. Find a number that has four identical even factors. Each factor must be greater than 1 and can have only 1 and itself as factors.
 \[2 \times 2 \times 2 \times 2 = 16 \]